Hindbrain V2a Neurons in the Excitation of Spinal Locomotor Circuits during Zebrafish Swimming
نویسندگان
چکیده
BACKGROUND During locomotion in vertebrates, reticulospinal neurons in the hindbrain play critical roles in providing descending excitation to the spinal cord locomotor systems. However, despite the fact that many genes that are used to classify the neuronal identities of neurons in the hindbrain have been identified, the molecular identity of the reticulospinal neurons that are critically involved in locomotor drive is not well understood. Chx10-expressing neurons (V2a neurons) are ipsilaterally projecting glutamatergic neurons in the spinal cord and the hindbrain. Many of the V2a neurons in the hindbrain are known to project to the spinal cord in zebrafish, making hindbrain V2a neurons a prime candidate in descending locomotor drive. RESULTS We investigated the roles of hindbrain V2a neurons using optogenetic and electrophysiological approaches. The forced activation of hindbrain V2a neurons using channelrhodopsin efficiently evoked swimming, whereas the forced inactivation of them using Archearhodopsin3 or Halorhodpsin reliably stopped ongoing swimming. Electrophysiological recordings of two populations of hindbrain reticulospinal V2a neurons showed that they were active during swimming. One population of neurons, small V2a neurons in the caudal hindbrain, fired with low rhythmicity, whereas the other population of neurons, large reticulospinal V2a neurons, called MiV1 neurons, fired more rhythmically. CONCLUSIONS These results indicated that hindbrain reticulospinal V2a neurons play critical roles in providing excitation to the spinal locomotor circuits during swimming by providing both tonic and phasic inputs to the circuits.
منابع مشابه
Origin of excitation underlying locomotion in the spinal circuit of zebrafish.
Neural circuits in the spinal cord transform instructive signals from the brain into well-coordinated locomotor movements by virtue of rhythm-generating components. Although evidence suggests that excitatory interneurons are the essence of locomotor rhythm generation, their molecular identity and the assessment of their necessity have remained unclear. Here we show, using larval zebrafish, that...
متن کاملDecoding the rules of recruitment of excitatory interneurons in the adult zebrafish locomotor network.
Neural networks in the spinal cord transform signals from the brain into coordinated locomotor movements. An optimal adjustment of the speed of locomotion entails a precise order of recruitment of interneurons underlying excitation within these networks. However, the mechanisms encoding the recruitment threshold of excitatory interneurons have remained unclear. Here we show, using a juvenile/ad...
متن کاملOptimization of a Neurotoxin to Investigate the Contribution of Excitatory Interneurons to Speed Modulation In Vivo
Precise control of speed during locomotion is essential for adaptation of behavior in different environmental contexts [1-4]. A central question in locomotion lies in understanding which neural populations set locomotor frequency during slow and fast regimes. Tackling this question in vivo requires additional non-invasive tools to silence large populations of neurons during active locomotion. H...
متن کاملMechanosensory neurons control the timing of spinal microcircuit selection during locomotion
Despite numerous physiological studies about reflexes in the spinal cord, the contribution of mechanosensory feedback to active locomotion and the nature of underlying spinal circuits remains elusive. Here we investigate how mechanosensory feedback shapes active locomotion in a genetic model organism exhibiting simple locomotion-the zebrafish larva. We show that mechanosensory feedback enhances...
متن کاملSeparate Microcircuit Modules of Distinct V2a Interneurons and Motoneurons Control the Speed of Locomotion
Spinal circuits generate locomotion with variable speed as circumstances demand. These circuits have been assumed to convey equal and uniform excitation to all motoneurons whose input resistance dictates their activation sequence. However, the precise connectivity pattern between excitatory premotor circuits and the different motoneuron types has remained unclear. Here, we generate a connectivi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 23 شماره
صفحات -
تاریخ انتشار 2013